Giải bài tập 9.10 trang 76 SGK Toán 9 tập 2 - Kết nối tri thứcCho đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F. Chứng minh rằng (widehat {EIF} + widehat {BAC} = {180^o}) Tổng hợp đề thi giữa kì 2 lớp 9 tất cả các môn - Kết nối tri thức Toán - Văn - Anh - KHTN Đề bài Cho đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F. Chứng minh rằng \(\widehat {EIF} + \widehat {BAC} = {180^o}\) Phương pháp giải - Xem chi tiết + Chứng minh \(\widehat {IFA} = \widehat {AEI} = {90^o}\) + Sử dụng tổng các góc trong tứ giác AEIF tính được tổng \(\widehat {EIF} + \widehat {BAC} = {180^o}\). Lời giải chi tiết
Vì đường tròn (I) nội tiếp tam giác ABC với các tiếp điểm trên các cạnh AB, AC lần lượt là E, F nên \(IF \bot AC,IE \bot AB \) suy ra \(\widehat {IFA} = \widehat {AEI} = {90^o}\). Tứ giác AEIF có: \(\widehat {EAF} + \widehat {EIF} + \widehat {IFA} + \widehat {AEI} = {360^o}\) \(\widehat {EIF} + \widehat {EAF} = {360^o} - \left( {\widehat {IFA} + \widehat {AEI}} \right) = {180^o} \) Vậy \(\widehat {EIF} + \widehat {BAC} = {180^o}\).
|