Giải bài 7.55 trang 43 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,AD\).

Đã có lời giải SGK Toán lớp 12 - Kết nối tri thức (mới)

Đầy đủ - Chi tiết - Chính xác

Đề bài

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(a\). Gọi \(M,N\) lần lượt là trung điểm của các cạnh \(AB,AD\).

a) Tính theo a thể tích khối chóp cụt \(AMN.A'B'D'\).

b) Tính theo a khoảng cách giữa hai đường thẳng \(MN\) và \(A'B\).

Phương pháp giải - Xem chi tiết

a) Tính theo a thể tích khối chóp cụt \(AMN.A'B'D'\).

Áp dụng công thức \(V = \frac{1}{3} \cdot AA' \cdot \left( {{S_{AMN}} + {S_{A'B'D'}} + \sqrt {{S_{AMN}} \cdot {S_{A'B'D'}}} } \right)\)

b) Tính theo a khoảng cách giữa hai đường thẳng \(MN\) và \(A'B\).

  • Tìm mặt phẳng chứa đường thẳng này và song song song với đường thẳng còn lại: \(MN//\left( {A'BD} \right)\)
  • \(d\left( {MN,A'B} \right) = d\left( {MN,\left( {A'BD} \right)} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {A'BD} \right)} \right)\)
  • Đặt \(h = d\left( {A,\left( {A'BD} \right)} \right)\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{A^{{\rm{'}}2}}}} \Rightarrow \) \(h \Rightarrow \)\(d\left( {MN,A'B} \right) = d\left( {MN,\left( {A'BD} \right)} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {A'BD} \right)} \right)\)

Vậy \(d\left( {MN,A'B} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{{a\sqrt 3 }}{6}\).

Lời giải chi tiết

a) Ta có:

\({S_{A'B'D'}} = \frac{{{a^2}}}{2};{S_{AMN}} = \frac{{{a^2}}}{8};{S_{ABCD}} = {a^2};AA' = a\), suy ra thể tích khối chóp cụt \(AMN \cdot A'B'D'\) là:

\(V = \frac{1}{3} \cdot AA' \cdot \left( {{S_{AMN}} + {S_{A'B'D'}} + \sqrt {{S_{AMN}} \cdot {S_{A'B'D'}}} } \right)\)

\( = \frac{1}{3} \cdot a \cdot \left( {\frac{{{a^2}}}{8} + \frac{{{a^2}}}{2} + \sqrt {\frac{{{a^2}}}{8} \cdot \frac{{{a^2}}}{2}} } \right) = \frac{{7{a^3}}}{{24}}{\rm{.\;}}\) 

b) Vì \(MN//BD\) nên \(MN//\left( {A'BD} \right)\), do đó:

\(d\left( {MN,A'B} \right) = d\left( {MN,\left( {A'BD} \right)} \right) = d\left( {M,\left( {A'BD} \right)} \right).\)

Vì \(M\) là trung điểm của \(AB\) nên \(d\left( {M,\left( {A'BD} \right)} \right) = \frac{1}{2}d\left( {A,\left( {A'BD} \right)} \right)\).

Đặt \(h = d\left( {A,\left( {A'BD} \right)} \right)\) thì \(\frac{1}{{{h^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{D^2}}} + \frac{1}{{A{A^{{\rm{'}}2}}}} = \frac{3}{{{a^2}}}\), suy ra \(h = \frac{{a\sqrt 3 }}{3}\).

Vậy \(d\left( {MN,A'B} \right) = d\left( {M,\left( {A'BD} \right)} \right) = \frac{{a\sqrt 3 }}{6}\).

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close