Giải bài 7.17 trang 31 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hình chóp (S.ABCD) có đáy (ABCD) là hình vuông tâm (O) và các cạnh đều bằng ({rm{a}}).

Tổng hợp đề thi giữa kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\) và các cạnh đều bằng \({\rm{a}}\).

a) Chứng minh rằng \(SO \bot \left( {ABCD} \right)\).

b) Tính góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\).

c) Gọi \(M\) là trung điểm của cạnh \(SC\) và \(\alpha \) là góc giữa đường thẳng \(OM\) và mặt phẳng\(\left( {SBC} \right)\). Tính \({\rm{sin}}\alpha \).

Phương pháp giải - Xem chi tiết

a) Chứng minh \(SO\) vuông góc với hai đường thẳng cắt nhau nằm trên \(ABCD\) rồi suy ra \(SO \bot \left( {ABCD} \right)\).

b) Chứng minh \(AO \bot \left( {SBD} \right)\).

Tìm hình chiếu vuông góc của \(SA\) trên mặt phẳng \(\left( {SBD} \right)\), do đó góc giữa đường thẳng \(SA\) và mặt phẳng \(\left( {SBD} \right)\) bằng góc giữa hai đường thẳng \(SA\) và hình chiếu của nó.

c) Kẻ \(OK \bot BC\) tại \(K,OH \bot SK\) tại \(H\) thì ta chứng minh \(OH \bot \left( {SBC} \right)\),

Tìm hình chiếu vuông góc của \(OM\) trên mặt phẳng \(\left( {SBC} \right)\).

Góc giữa đường thẳng \(OM\) và mặt phẳng \(\left( {SBC} \right)\) bằng góc giữa hai đường thẳng \(OM\) và hình chiếu của nó.

Áp dụng tỉ số lượng giác cho tam giác vuông để tính góc.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

a) Có SA = SB = SC = SD = AB = BC = CD = DA = a.

Vì O là trung điểm của AC và BD nên SO vừa là đường trung tuyến, vừa là đường cao của hai tam giác cân SAC và SBD.

Ta có: \(SO \bot AC\); \(SO \bot BD\) nên \(SO \bot \left( {ABCD} \right)\).

b) Vì \(SO \bot \left( {ABCD} \right) \Rightarrow SO \bot AO\); mà \(AO \bot BD\) (hai đường chéo hình vuông) nên \(AO \bot \left( {SBD} \right)\).

Vì \(AO \bot \left( {SBD} \right)\) nên O là hình chiếu vuông góc của A trên mặt phẳng (SBD), do đó SO là hình chiếu vuông góc của SO trên mặt phẳng (SBD).

Góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc giữa hai đường thẳng SA và SO. Mà \(\left( {SA,SO} \right) = \widehat {ASO}\) nên góc giữa đường thẳng SA và mặt phẳng (SBD) bằng góc \(\widehat {ASO}\). Xét tam giác SAC có

Có \(\left\{ \begin{array}{l}S{A^2} + S{C^2} = {a^2} + {a^2} = 2{a^2}\\A{C^2} = A{B^2} + B{C^2} = {a^2} + {a^2} = 2{a^2}\end{array} \right. \Rightarrow S{A^2} + S{C^2} = A{C^2} \Rightarrow SA \bot SC\) (định lí Pythagore đảo), suy ra tam giác SAC vuông cân tại \(S\) và \(\widehat {ASO} = {45^o}\). Vậy góc giữa đường thẳng SA và mặt phẳng (SBD) bằng \({45^o}\).

c) Kẻ \(OK \bot BC\) tại K, \(OH \bot SK\) tại H.

Có \(\left\{ \begin{array}{l}SO \bot (ABCD) \Rightarrow SO \bot BC\\OK \bot BC\end{array} \right. \Rightarrow BC \bot (SOK) \Rightarrow BC \bot OH\).

Mà \(\left\{ \begin{array}{l}BC \bot OH\\SK \bot OH\end{array} \right. \Rightarrow OH \bot (SBC)\), hay H là hình chiếu của O trên mặt phẳng (SBC).

Suy ra HM là hình chiếu vuông góc của OM trên mặt phẳng (SBC), do đó góc giữa đường thẳng OM và mặt phẳng (SBC) bằng góc giữa hai đường thẳng OM và MH, mà \(\left( {OM,MH} \right) = \widehat {OMH}\) nên góc giữa đường thẳng OM và mặt phẳng (SBC) bằng góc \(\widehat {{\rm{OMH}}}\).

Vì tam giác SAC vuông cân tại S có đường cao SO nên OA = OC = SO.

Do đó, tam giác SOC vuông cân tại O, ta lại có OM = SM = MC = \(\frac{{SC}}{2} = \frac{a}{2}\).

\(OK = \frac{a}{2}\); \(SO = \frac{{AC}}{2} = \frac{{a\sqrt 2 }}{2}\); \(SK = \sqrt {S{B^2} - B{K^2}} = \sqrt {{a^2} - {{\left( {\frac{a}{2}} \right)}^2}} = \frac{{a\sqrt 3 }}{2}\).

Tam giác SOK vuông tại O, đường cao \({\rm{OH}}\) nên \({\rm{OH}}{\rm{.SK = SO}}{\rm{.OK}} \Leftrightarrow {\rm{OH}} = \frac{{{\rm{SO}} \cdot {\rm{OK}}}}{{SK}} = \frac{{a\sqrt 6 }}{6}\).

Vì tam giác OMH vuông tại H nên \({\rm{sin}}\alpha {\rm{\;}} = {\rm{sin}}\widehat {OMH} = \frac{{OH}}{{OM}} = \frac{{\sqrt 6 }}{3}\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close