Giải bài 5.32 trang 88 sách bài tập toán 11 - Kết nối tri thức với cuộc sống

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\)

Tổng hợp đề thi giữa kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hàm số \(f(x)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = 2\) và \(\mathop {\lim }\limits_{x \to {1^ - }} f(x) = m + 1\). Biết giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại. Giá trị của m

A. \(m = 1\)

B. \(m = 2\)

C. \(m = 3\)

D. Không tồn tại m.

Phương pháp giải - Xem chi tiết

Dựa vào lý thuyết \(\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = L\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = L\) để tính ra m.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Đáp án A.

Giới hạn của \(f(x)\) khi \(x \to 1\) tồn tại khi và chỉ khi \(\mathop {\lim }\limits_{x \to 1_{}^ + } f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right)\).

Nên \(2 = m + 1 \Rightarrow m = 1.\)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close