Giải bài 45 trang 68 sách bài tập toán 9 - Cánh diều tập 1So sánh: a) \(5\sqrt 5 \) và \(4\sqrt 3 \) b) \(\sqrt {36 + 16} \) và \(\sqrt {36} + \sqrt {16} \) c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \) d) \(\sqrt 6 - \sqrt 2 \) và 1 Tổng hợp đề thi giữa kì 2 lớp 9 tất cả các môn - Cánh diều Toán - Văn - Anh - KHTN Đề bài So sánh: a) \(5\sqrt 5 \) và \(4\sqrt 3 \) b) \(\sqrt {36 + 16} \) và \(\sqrt {36} + \sqrt {16} \) c) \(\frac{1}{{\sqrt {60} }}\) và \(2\sqrt {\frac{1}{{15}}} \) d) \(\sqrt 6 - \sqrt 2 \) và 1 Phương pháp giải - Xem chi tiết a) Đưa hết các thừa số vào trong căn. b) Tính kết quả từng hạng tử. c) Đưa hết các thừa số vào trong căn. d) Xét hiệu \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} - 1\). Lời giải chi tiết a) Ta có: \(5\sqrt 5 = \sqrt {{5^2}.5} = \sqrt {125} \) và \(4\sqrt 3 = \sqrt {{4^2}.3} = \sqrt {48} \). Do \(\sqrt {125} > \sqrt {48} \) nên \(5\sqrt 5 > 4\sqrt 3 \). b) Ta có \(\sqrt {36 + 16} = \sqrt {52} \) và \(\sqrt {36} + \sqrt {16} = 6 + 4 = 10 = \sqrt {100} \) Do \(\sqrt {52} < \sqrt {100} \) nên \(\sqrt {36 + 16} < \sqrt {36} + \sqrt {16} \). c) Ta có \(\frac{1}{{\sqrt {60} }} = \sqrt {\frac{1}{{60}}} \) và \(2\sqrt {\frac{1}{{15}}} = \sqrt {{2^2}.\frac{1}{{15}}} = \sqrt {\frac{4}{{15}}} \) Do \(\frac{1}{{60}} < \frac{4}{{15}}\) nên \(\sqrt {\frac{1}{{60}}} < \sqrt {\frac{4}{{15}}} \) hay \(\frac{1}{{\sqrt {60} }} < 2\sqrt {\frac{1}{{15}}} \). d) Xét hiệu \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} - 1\\ = 6 - 2\sqrt {12} + 2 - 1\\ = 7 - 2\sqrt {12} \\ = \sqrt {49} - \sqrt {48} > 0\) Suy ra \({\left( {\sqrt 6 - \sqrt 2 } \right)^2} > 1\) do đó \(\sqrt 6 - \sqrt 2 > 1\).
|