Giải bài 3 trang 27 SGK Toán 8 tập 1 - Cánh diềuTính giá trị của mỗi biểu thức sau: Tổng hợp đề thi giữa kì 2 lớp 8 tất cả các môn - Cánh diều Toán - Văn - Anh - Khoa học tự nhiên Đề bài Tính giá trị của mỗi biểu thức sau: a) \(A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\) biết \({x^2} - y = 6\) b) \(B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\) biết xy + z = 0. Phương pháp giải - Xem chi tiết Phân tích các biểu thức đã cho thành các nhân tử có chúa nhân tử của đề bài sau đó thay số. Lời giải chi tiết a) \(\begin{array}{l}A = {x^4} - 2{{\rm{x}}^2}y - {x^2} + {y^2} + y\\A = \left( {{x^4} - 2{{\rm{x}}^2}y + {y^2}} \right) + \left( {y - {x^2}} \right)\\A = {\left( {{x^2} - y} \right)^2} - \left( {{x^2} - y} \right)\\A = \left( {{x^2} - y} \right)\left( {{x^2} - y - 1} \right)\end{array}\) Với \({x^2} - y = 6\) ta có: \(A = 6.\left( {6 - 1} \right) = 30\) Vậy A = 30 b) Ta có: \(\begin{array}{l}B = {x^2}{y^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy} \right)^2} + 2{\rm{x}}yz + {z^2}\\B = {\left( {xy + z} \right)^2}\end{array}\) Với xy + z = 0 nên: \(B = {0^2} = 0\) Vậy B = 0
|