Giải bài 1.29 trang 21 SGK Toán 8 tập 1 - Kết nối tri thứcChứng minh đẳng thức sau: = Đã có lời giải SGK Toán lớp 9 - Kết nối tri thức (mới) Đầy đủ - Chi tiết - Chính xác Đề bài Chứng minh đẳng thức sau: \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\). Phương pháp giải - Xem chi tiết Thực hiện phép nhân đa thức với đa thức ở 2 vế. Muốn nhân đơn thức với đa thức, ta nhân đơn thức với từng hạng tử của đa thức rồi cộng các tích với nhau. Sau đó, nhóm các hạng tử đồng dạng để thu gọn đa thức. Lời giải chi tiết Ta có: \(\begin{array}{l}\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right)\\ = 2x.2{x^2} + 2x.xy - 2x.{y^2} + y.2{x^2} + y.xy - y.{y^2}\\ = 4{x^3} + 2{x^2}y - 2x{y^2} + 2{x^2}y + x{y^2} - {y^3}\\ = 4{x^3} + \left( {2{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} + x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\\\left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\\ = 2x.2{x^2} + 2x.3xy + 2x.{y^2} - y.2{x^2} - y.3xy - y.{y^2}\\ = 4{x^3} + 6{x^2}y + 2x{y^2} - 2{x^2}y - 3x{y^2} - {y^3}\\ = 4{x^3} + \left( {6{x^2}y - 2{x^2}y} \right) + \left( {2x{y^2} - 3x{y^2}} \right) - {y^3}\\ = 4{x^3} + 4{x^2}y - x{y^2} - {y^3}\end{array}\) Do đó, \(\left( {2x + y} \right)\left( {2{x^2} + xy - {y^2}} \right) = \left( {2x - y} \right)\left( {2{x^2} + 3xy + {y^2}} \right)\)
|