xemloigiai.com

  • Lớp 12 Học ngay
  • Lớp 11 Học ngay
  • Lớp 10 Học ngay
  • Lớp 9 Học ngay
  • Lớp 8 Học ngay
  • Lớp 7 Học ngay
  • Lớp 6 Học ngay
  • Lớp 5 Học ngay
  • Lớp 4 Học ngay
  • Lớp 3 Học ngay
  • Lớp 2 Học ngay
  • Lớp 1 Học ngay
Giải chuyên đề học tập Toán lớp 10 Cánh diều | Chuyên đề 2: Phương pháp quy nạp toán học. Nhị thức Newton

Các mục con

  • bullet Bài 1. Phương pháp quy nạp toán học
  • bullet Bài 2. Nhị thức Newton
  • Câu hỏi mục 1 trang 23, 24, 25

    Chia hình vuông cạnh 1 thành 4 hình vuông nhỏ bằng nhau, lấy ra hình vuông nhỏ thứ nhất (ở góc dưới bên trái, màu đỏ), cạnh của hình vuông đó bằng (frac{1}{2}.)

    Xem chi tiết
  • Câu hỏi mục 2 trang 25, 26

    Chứng minh với mọi \(n \in \mathbb{N}*,{(1 + \sqrt 2 )^n},{(1 - \sqrt 2 )^n}\) lần lượt viết được ở dạng \({a_n} + {b_n}\sqrt 2 ,{a_n} - {b_n}\sqrt 2 ,\) trong đó \({a_n},{b_n}\) là các số nguyên dương.

    Xem chi tiết
  • Câu hỏi mục 1 trang 31, 32

    a) Quan sát khai triển biểu thức sau:

    Xem chi tiết
  • Câu hỏi mục 2 trang 34

    Từ các đẳng thức như

    Xem chi tiết
  • Bài 1 trang 29

    Cho \({S_n} = 1 + 2 + {2^2} + ... + {2^n}\) và \({T_n} = {2^{n + 1}} - 1\), với \(n \in \mathbb{N}*\)

    Xem chi tiết
  • Bài 1 trang 37

    Khai triển biểu thức:

    Xem chi tiết
  • Bài 2 trang 29

    Cho \({S_n} = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^n}}}\) và \({T_n} = 2 - \frac{1}{{{2^n}}}\), với \(n \in \mathbb{N}*\)

    Xem chi tiết
  • Bài 2 trang 37

    Tính: a) \(S = C_{2022}^0{9^{2022}} + C_{2022}^1{9^{2021}} + ... + C_{2022}^k{9^{2022 - k}} + ... + C_{2022}^{2021}9 + C_{2022}^{2022}\)

    Xem chi tiết
  • Bài 3 trang 29

    Cho \({S_n} = \frac{1}{{1.5}} + \frac{1}{{5.9}} + \frac{1}{{9.13}} + ... + \frac{1}{{(4n - 3)(4n + 1)}}\) với \(n \in \mathbb{N}*\)

    Xem chi tiết
  • Bài 3 trang 37

    Chứng minh \(C_n^0{3^n} + C_n^1{3^{n - 1}} + ... + C_n^k{3^{n - k}} + ... + C_n^{n - 1}3 + C_n^n\)

    Xem chi tiết

  • Trang chủ
  • Lớp 12
  • Lớp 11
  • Lớp 10
  • Lớp 9
  • Lớp 8
  • Lớp 7
  • Lớp 6
  • Lớp 5
  • Lớp 4
  • Lớp 3
  • Lớp 2
  • Lớp 1