Câu hỏi:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật, \(AB = AD\sqrt 2 \), \(SA \bot \left( {ABC} \right)\). Gọi \(M\) là trung điểm của \(AB\). Góc giữa hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng

  • A \(45^\circ \).
  • B \(90^\circ \).
  • C \(60^\circ \).
  • D \(30^\circ \).

Phương pháp giải:

Chứng minh hai mặt phẳng đã cho vuông góc để suy ra góc giữa hai mặt phẳng.

Để chứng minh \(\left( P \right) \bot \left( Q \right)\) ta chứng minh \(d \bot \left( Q \right)\) mà \(d \subset \left( P \right).\)

Lời giải chi tiết:

Gọi \(K\) là giao điểm của \(AC\) và \(DM\).

Ta có \(AM = MB = \dfrac{{AB}}{2} = \dfrac{{AD\sqrt 2 }}{2}\) và \(BC = AD\)

Xét tam giác vuông \(ADM\) có \(\tan \widehat {ADM} = \dfrac{{AM}}{{AD}} = \dfrac{{\dfrac{{AD\sqrt 2 }}{2}}}{{AD}} = \dfrac{{\sqrt 2 }}{2}\) (1)

Xét tam giác vuông \(ABC\) có \(\tan \widehat {BAC} = \dfrac{{BC}}{{AB}} = \dfrac{{AD}}{{AD\sqrt 2 }} = \dfrac{{\sqrt 2 }}{2}\) (2)

Từ (1) và (2) suy ra \(\tan \widehat {ADM} = \tan \widehat {BAC} \Rightarrow \widehat {ADM} = \widehat {BAC}\) 

mà \(\widehat {ADM} + \widehat {AMD} = 90^\circ \Rightarrow \widehat {BAC} + \widehat {AMK} = 90^\circ \Rightarrow \widehat {AKM} = 90^\circ \) hay \(DM \bot AC\) (3)

Lại có \(SA \bot \left( {ABC} \right) \Rightarrow SA \bot AC\) (4)

Từ (3) và (4) suy ra \(AC \bot \left( {SDM} \right) \Rightarrow \left( {SAC} \right) \bot \left( {SDM} \right)\) nên góc giữa \(\left( {SAC} \right)\) và \(\left( {SDM} \right)\) bằng \(90^\circ .\)

Chọn B.



Làm Bài Trắc nghiệm Toán 11 - Xem ngay