Câu hỏi 4 trang 159 SGK Đại số và Giải tích 11

Áp dụng các công thức trong Định lí 3, hãy tính đạo hàm của các hàm số...

Đề bài

Áp dụng các công thức trong Định lí 3, hãy tính đạo hàm của các hàm số \(y = 5{x^3} - 2{x^5}\); \(y = - {x^3}\sqrt x \).

Phương pháp giải - Xem chi tiết

Sử dụng các công thức tính đạo hàm hàm \(y = {x^n}\) và hàm \(y = \sqrt x \)

Lời giải chi tiết

\({\left( 1 \right){\rm{ }}y' = {\rm{ }}(5{x^3}\; - {\rm{ }}2{x^5})' = {\rm{ }}(5{x^3})'{\rm{ }} - {\rm{ }}(2{x^5}\;)'}\)

\({ = {\rm{ }}(5'.{x^3}\; + {\rm{ }}5({x^3}\;)') - (2'.{x^5}\; + {\rm{ }}2.({x^5})')}\)

\({ = {\rm{ }}(0.{x^3}\; + {\rm{ }}5.3{x^2}) - (0.{x^5}\; + {\rm{ }}2.5{x^4})}\)

\({ = {\rm{ }}(0{\rm{ }} + {\rm{ }}15{x^2}) - (0{\rm{ }} + {\rm{ }}10{x^4})}\)

\({ = {\rm{ }}15{x^2}\; - {\rm{ }}10{x^4}}\)

\({\left( 2 \right){\rm{ }}y' = ( - {x^3}\sqrt x )'}\)

\({ = {\rm{ }}( - {x^3}\;)'.\sqrt x {\rm{ }} + {\rm{ }}( - {x^3}\;).\left( {\sqrt x } \right)'}\)

\({ = {\rm{ }} - 3{x^2}.\sqrt x {\rm{ }} - {\rm{ }}{x^3}\;.\frac{1}{{2\sqrt x }}}\)

 xemloigiai.com

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close