Câu hỏi 3 trang 57 SGK Hình học 11

Cho hai mặt phẳng α và β. Một mặt phẳng λ cắt α và β lần lượt theo các giao tuyến a và b...

Đề bài

Cho hai mặt phẳng \((\alpha)\) và \((\beta)\). Một mặt phẳng \((\lambda)\) cắt \((\alpha)\) và \((\beta)\) lần lượt theo các giao tuyến \(a\) và \(b\). Chứng minh rằng khi \(a\) và \(b\) cắt nhau tại \(I\) thì \(I\) là điểm chung của \((\alpha)\) và \((\beta)\). (h.2.32).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(a\) và \(b\) cắt nhau tại \(I\) nên:

\(I \in a \subset (a)\) (vì \(a\) là giao tuyến của \((\alpha)\) và \((\lambda)\))

\(I \in b \subset (\beta )\) ( vì \(b\) là giao tuyến của \((\beta)\) và \((\lambda)\))

Nên \(I\) là điểm chung của \((\alpha)\) và \((\beta)\).

 xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close