Câu hỏi 3 trang 21 SGK Hình học 11

Gọi A’, B’ lần lượt là ảnh của A, B qua phép dời hình F. Chứng minh rằng nếu M là trung điểm của AB thì M’ = F(M) là trung điểm của A’B’....

Đề bài

Gọi \(A’, B’\) lần lượt là ảnh của \(A, B\) qua phép dời hình \(F\). Chứng minh rằng nếu \(M\) là trung điểm của \(AB\) thì \(M’ = F(M)\) là trung điểm của \(A’B’.\)

Phương pháp giải - Xem chi tiết

+) Phép dời hình bảo toàn khoảng cách giữa hai điểm bất kì.

+) Biến ba điểm thằng hàng thành ba điểm thẳng hàng và bảo toàn thứ tự giữa các điểm ấy.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi \(A', B', M'\) lần lượt là ảnh của \(A, B, M\) qua phép dời hình \(F\)

Theo tính chất 1 ta có: \(AB = A'B'\) và \(AM = A'M'\); Ba điểm \(A' B', M'\) thẳng hàng, trong đó \(M'\) nằm giữa.

\(M\) là trung điểm \(AB ⇒ AM = {1 \over 2} AB\)

Kết hợp (1) \(⇒ A'M' = {1 \over 2} A'B' ⇒ M'\) là trung điểm \(A'B'.\)

 xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close