Câu hỏi:

Cho \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch với nhau. Khi \(x = - \frac{1}{2}\) thì \(y = 8\). Khi đó hệ số tỉ lệ \(a\) và công thức biểu diễn \(y\) theo \(x\) là:

  • A \(a = - 4;\,y = - 4x\) 
  • B \(a = - 4;\,y = \frac{{ - 4}}{x}\)
  • C \(a = - 16;\,y = \frac{{ - 16}}{x}\)
  • D \(a = 8;\,y = 8x\)

Phương pháp giải:

Áp dụng tính chất dãy tỉ số bằng nhau:

Nếu hai đại lượng y và x tỉ lệ nghịch với nhau theo hệ số tỉ lệ \(a\) thì:

\({x_1}{y_1} = {x_2}{y_2} = {x_3}{y_3} = ... = a\)

Lời giải chi tiết:

Vì \(x\) và \(y\) là hai đại lượng tỉ lệ nghịch với nhau và \(x = - \frac{1}{2}\) thì \(y = 8\)

Nên hệ số tỉ lệ là \(a = x.y = \left( { - \frac{1}{2}} \right).8 = - 4\)

Công thức biểu diễn \(y\) theo \(x\) là \(y = \frac{{ - 4}}{x}\)

Vậy \(a = - 4;y = \frac{{ - 4}}{x}.\)

Chọn B.



Làm Bài Trắc nghiệm Toán 7 - Kết nối tri thức - Xem ngay