Câu hỏi 1 trang 13 SGK Hình học 11

Chứng minh rằng...

Đề bài

Chứng minh rằng \(M = {Đ_I}\left( M \right){\rm{ }} \Leftrightarrow {\rm{ }}M = {Đ_I}\left( {M'} \right)C\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

\(M = {Đ_I}\left( M \right)\) nghĩa là phép biến hình này biến điểm \(I\) thành chính nó

hoặc biến mỗi điểm \(M\) khác \(I\) thành \(M'\) sao cho \(I\) là trung điểm

của đoạn thẳng \(MM'\)

\(+)\,M \equiv {\rm{ }}I{\rm{ }} \Rightarrow {\rm{ }}M' = {\rm{ }}{Đ_I}\left( M \right) \equiv {\rm{ }}M \equiv {\rm{ }}I{\rm{ }} \Rightarrow {\rm{ }}M = {\rm{ }}{Đ_I}\left( {M'} \right)\)

\( +) \, M \ne {\rm{ }}I \Rightarrow {\rm{ }}M' = {\rm{ }}{Đ_I}\left( M \right)\) thì \(I\) là trung điểm của MM’

\( \Rightarrow {\rm{ }}M' \ne {\rm{ }}I\) và phép biến hình biến mỗi điểm \(M'\) thành \(M\) sao cho \(I\) là trung điểm của đoạn thẳng \(M'M\)

\( \Rightarrow {\rm{ }}M = {\rm{ }}{Đ_I}\;\left( {M'} \right)\)

 xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close