Bài 9 trang 41 SGK Đại số và Giải tích 11

Nghiệm âm lớn nhất của phương trình:

Đề bài

Nghiệm âm lớn nhất của phương trình \(2{\tan ^2}x + 5\tan x + 3 = 0\) là:

A. \({{ - \pi } \over 3}\)  B. \({{ - \pi } \over 4}\)

C. \({{ - \pi } \over 6}\) D. \({{ - 5\pi } \over 6}\)

Phương pháp giải - Xem chi tiết

B1: Đặt \(t= \tan {x}\), giải phương trình bậc hai ẩn t.

B2: Giải phương trình lượng giác cơ bản và biểu diễn các nghiệm trên đường tròn lượng giác.

Lời giải chi tiết

Ta có:

\(\begin{array}{l}
2{\tan ^2}x + 5\tan x + 3 = 0 \\\Leftrightarrow \left[ \begin{array}{l}
\tan x = - 1\\
\tan x = - \frac{3}{2}
\end{array} \right.\\
\tan x = - 1 \Leftrightarrow x = - \frac{\pi }{4} + k\pi \\
\tan x = - \frac{3}{2}\Leftrightarrow x = \arctan \left( { - \frac{3}{2}} \right) + k\pi
\end{array}\)

Nghiệm âm lớn nhất của họ nghiệm \(x = - \frac{\pi }{4} + k\pi \) là \(x = - \frac{\pi }{4}\).

Nghiệm âm lớn nhất của họ nghiệm \(x = \arctan \left( { - \frac{3}{2}} \right) + k\pi \) là \(x = \arctan \left( { - \frac{3}{2}} \right)\)

Mà \(\arctan \left( { - \frac{3}{2}} \right) \approx - 0,983, \) \(- \frac{\pi }{4} \approx - 0,785 \Rightarrow - \frac{\pi }{4} > \arctan \left( { - \frac{3}{2}} \right)\)

Vậy nghiệm âm lớn nhất của pt là \(x = - \frac{\pi }{4}\).

Cách khác:

Dựa vào đường tròn lượng giác ta có: \(x = - {\pi \over 4}\) là nghiệm âm lớn nhất của phương trình đã cho.

Chọn đáp án B.

xemloigiai.com

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close