Bài 9 trang 41 SGK Đại số và Giải tích 11Nghiệm âm lớn nhất của phương trình: Đề bài Nghiệm âm lớn nhất của phương trình \(2{\tan ^2}x + 5\tan x + 3 = 0\) là: A. \({{ - \pi } \over 3}\) B. \({{ - \pi } \over 4}\) C. \({{ - \pi } \over 6}\) D. \({{ - 5\pi } \over 6}\) Phương pháp giải - Xem chi tiết B1: Đặt \(t= \tan {x}\), giải phương trình bậc hai ẩn t. B2: Giải phương trình lượng giác cơ bản và biểu diễn các nghiệm trên đường tròn lượng giác. Lời giải chi tiết Ta có: \(\begin{array}{l} Nghiệm âm lớn nhất của họ nghiệm \(x = - \frac{\pi }{4} + k\pi \) là \(x = - \frac{\pi }{4}\). Nghiệm âm lớn nhất của họ nghiệm \(x = \arctan \left( { - \frac{3}{2}} \right) + k\pi \) là \(x = \arctan \left( { - \frac{3}{2}} \right)\) Mà \(\arctan \left( { - \frac{3}{2}} \right) \approx - 0,983, \) \(- \frac{\pi }{4} \approx - 0,785 \Rightarrow - \frac{\pi }{4} > \arctan \left( { - \frac{3}{2}} \right)\) Vậy nghiệm âm lớn nhất của pt là \(x = - \frac{\pi }{4}\). Cách khác:
Dựa vào đường tròn lượng giác ta có: \(x = - {\pi \over 4}\) là nghiệm âm lớn nhất của phương trình đã cho. Chọn đáp án B. xemloigiai.com
|