Câu 5.52 trang 187 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho hàm số

Lựa chọn câu để xem lời giải nhanh hơn

Cho hàm số

\(f\left( x \right) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3} + ... + {{{x^{n + 1}}} \over {n + 1}}\,\,\left( {n \in N} \right)\)

Tìm

LG a

\(\mathop {\lim }\limits_{x \to 1} f'\left( x \right)\)

Phương pháp giải:

Ta có

\(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

\(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 1} f'\left( x \right) = \mathop {\lim }\limits_{x \to 1} \left( {1 + x + {x^2} + ... + {x^n}} \right) = n + 1\)

Quảng cáo

Lộ trình SUN 2026

LG b

\(\mathop {\lim }\limits_{x \to 2} f'\left( x \right)\)

Phương pháp giải:

Ta có

\(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

\(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to 2} f'\left( x \right) = \mathop {\lim }\limits_{x \to 2} {{1 - {x^{n + 1}}} \over {1 - x}} = {{1 - {2^{n + 1}}} \over {1 - 2}} = {2^{n + 1}} - 1\)

LG c

\(\mathop {\lim }\limits_{x \to \infty } f'\left( {{1 \over 2}} \right)\)

Phương pháp giải:

Ta có

\(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

\(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

 \(\mathop {\lim }\limits_{x \to \infty } f'\left( {{1 \over 2}} \right) = \mathop {\lim }\limits_{x \to \infty } {{1 - {{\left( {{1 \over 2}} \right)}^n}} \over {1 - {1 \over 2}}} = 2\)(vì\(\mathop {\lim }\limits_{n \to + \infty } {\left( {{1 \over 2}} \right)^{n + 1}} = 0\))

LG d

\(\mathop {\lim }\limits_{x \to \infty } f'\left( 3 \right)\)

Phương pháp giải:

Ta có

\(f'\left( x \right) = 1 + x + {x^2} + ... + {x^n}\)

Áp dụng công thức tổng quát của cấp số nhân cới số hạng đầu \({u_1} = 1\) và công bội \(q = x \ne 1\) ta được:

\(f'\left( x \right) = {{1 - {x^{n + 1}}} \over {1 - x}}\)

Lời giải chi tiết:

 \(\mathop {\lim }\limits_{x \to \infty } f'\left( 3 \right) = \mathop {\lim }\limits_{x \to \infty } {{1 - {3^{n + 1}}} \over {1 - 3}} = \mathop {\lim }\limits_{x \to \infty } {1 \over 2}\left( {{3^{n + 1}} - 1} \right) = + \infty \)

(vì \(\mathop {\lim }\limits_{n \to \infty } {\left( {{1 \over 3}} \right)^{n + 1}} = 0\) suy ra\(\mathop {\lim }\limits_{n \to \infty } {3^{n + 1}} = + \infty \))

xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close