Câu 4.3 trang 103 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.3 trang 103 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Cho a, b, c là ba số dương. Chứng minh rằng

LG a

Nếu \(a < b\) thì \(\dfrac{a}{b} < \dfrac{{a + c}}{{b + c}}\)

Phương pháp giải:

Ta có \(\dfrac{{a + c}}{{b + c}} - \dfrac{a}{b} = \dfrac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}\)

Lời giải chi tiết:

Nếu \(0 < a < b\) và \( c > 0\) thì

\(\dfrac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}} > 0.\,Suy\,ra\,\dfrac{a}{b} < \dfrac{{a + c}}{{b + c}}\)

LG b

Nếu \(a > b\) thì \(\dfrac{a}{b} > \dfrac{{a + c}}{{b + c}}\)

Phương pháp giải:

Ta có \(\dfrac{{a + c}}{{b + c}} - \dfrac{a}{b} = \dfrac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}}\)

Lời giải chi tiết:

Nếu \(a > b > 0\) và \(c > 0\) thì

\(\dfrac{{c\left( {b - a} \right)}}{{b\left( {b + c} \right)}} < 0.\,Suy\,ra\,\dfrac{a}{b} > \dfrac{{a + c}}{{b + c}}\)

xemloigiai.com

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close