Câu 4.2 trang 102 SBT Đại số 10 Nâng cao

Giải bài tập Câu 4.2 trang 102 SBT Đại số 10 Nâng cao.

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh rằng

LG a

\({a^4} + {b^4} \ge {a^3}b + a{b^3}\) với mọi a, b ∈ R.

Lời giải chi tiết:

\(\begin{array}{l}{a^4} + {b^4} - {a^3}b - a{b^3}\\ = {a^3}\left( {{\rm{a}} - b} \right) + {b^3}\left( {b - a} \right)\\ = \left( {{\rm{a}} - b} \right)\left( {{{\rm{a}}^3} - {b^3}} \right)\\ = {\left( {{\rm{a}} - b} \right)^2}\left( {{{\rm{a}}^2} + {b^2} + ab} \right) \ge 0.\end{array}\)

(Vì \({a^2} + {b^2} + ab = {\left( {{\rm{a}} + \dfrac{b}{2}} \right)^2} + \dfrac{{3{b^2}}}{4} \ge 0\) và \({\left( {{\rm{a}} - b} \right)^2} \ge 0\) với mọi a, b ∈ R)

LG b

\({\left( {{\rm{a}} + b + c} \right)^2} \le 3\left( {{{\rm{a}}^2} + {b^2} + {c^2}} \right)\) với mọi a, b, c ∈ R.

Lời giải chi tiết:

\(\begin{array}{l}{\left( {{\rm{a}} + b + c} \right)^2} \le 3\left( {{{\rm{a}}^2} + {b^2} + {c^2}} \right)\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(1)\\ \Leftrightarrow {{\rm{a}}^2} + {b^2} + {c^2} + 2{\rm{a}}b + 2{\rm{a}}c + 2bc \le 3{{\rm{a}}^2} + 3{b^2} + 3{c^2}\\ \Leftrightarrow {{\rm{a}}^2} + {b^2} + {c^2} - ab - ac - bc \ge 0\\ \Leftrightarrow {\left( {{\rm{a}} - b} \right)^2} + {\left( {b - c} \right)^2} + {\left( {c - a} \right)^2} \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)\end{array}\)

Bất đẳng thức (2) luôn đúng nên bất đẳng thức (1) được chứng minh.

xemloigiai.com

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

close