Bài 4 trang 107 SGK Đại số và Giải tích 11

Cho hai cấp số nhân có cùng có các số hạng. Tính các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.

Đề bài

Cho hai cấp số nhân có cùng số các số hạng. Tính các số hạng tương ứng của chúng có lập thành cấp số nhân không? Vì sao? Cho một ví dụ minh họa.

Phương pháp giải - Xem chi tiết

Định nghĩa CSN: \((u_n)\) là CSN công bội q thì \({u_{n + 1}} = q{u_n}\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Gọi \((a_n)\) là cấp số nhân công bội \(q_1\) và \((b_n)\) là cấp số nhân công bội \(q_2\) tương ứng.

Xét \(\left( {{u_n}} \right)\) với \({u_n} = {a_n}.{b_n}\)

Ta có:

\({u_{n + 1}} = {a_{n + 1}}.{b_{n + 1}} \)

\(\Rightarrow \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{a_{n + 1}}{b_{n + 1}}}}{{{a_n}{b_n}}} = \frac{{{a_{n + 1}}}}{{{a_n}}}.\frac{{{b_{n + 1}}}}{{{b_n}}} = {q_1}{q_2}\)

Vậy dãy số \((u_n)\) là một cấp số nhân có công bội : \(q = q_1q_2\)

Ví dụ:

\(1, 2, 4 ,...\) là cấp số nhân có công bội \(q_1= 2\)

\(3, 9, 27, ...\) là cấp số nhân có công bội \(q_2= 3\)

Suy ra: \(3, 18, 108...\) là cấp số nhân có công bội: \(q = q_1q_2= 2.3 = 6\).

 xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close