Câu 3.22 trang 89 sách bài tập Đại số và Giải tích 11 Nâng cao

Cho dãy số

Lựa chọn câu để xem lời giải nhanh hơn

Cho dãy số \(({u_n}),\) với \({u_n} = \sin {{n\pi } \over 3} + \cos {{n\pi } \over 6}.\)

LG a

Hãy tính \({u_1},{u_2},{u_3},{u_4},{u_5}.\)

Lời giải chi tiết:

\(\eqalign{
& {u_1} = \sqrt 3 \cr 
& {u_2} = {{\sqrt 3 + 1} \over 2} \cr 
& {u_3} = 0 \cr 
& {u_4} = - \sqrt 3 \cr 
& {u_5} = - \sqrt 3 \cr} \)

Quảng cáo

Lộ trình SUN 2026

LG b

Chứng minh rằng \({u_n} = {u_{n + 12}}\) với mọi \(n \ge 1.\)

Lời giải chi tiết:

Với n là một số nguyên dương tùy ý, ta có

\(\eqalign{
& {u_{n + 12}} = \sin {{\left( {n + 12} \right)\pi } \over 3} + \cos {{\left( {n + 12} \right)\pi } \over 6} \cr 
& \,\,\,\,\,\,\,\,\,\, = \sin \left( {{{n\pi } \over 3} + 4\pi } \right) + \cos \left( {{{n\pi } \over 6} + 2\pi } \right) \cr 
& \,\,\,\,\,\,\,\,\, = \sin {{n\pi } \over 3} + \cos {{n\pi } \over 6} = {u_n} \cr} \)

xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close