Bài 1.60 trang 18 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.60 trang 18 sách bài tập Đại số và Giải tích 11 Nâng cao. Chứng minh rằng...

Đề bài

Chứng minh rằng

\({\cos ^2}(x - a) + {\sin ^2}(x - b) \)\(- 2\cos (x - a)\sin (x - b)\sin (a - b) \)\(= {\cos ^2}(a - b)\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Ta có:

\(\eqalign{
& {\cos ^2}(x - a) + {\sin ^2}(x - b) \cr&= {{1 + \cos 2\left( {x - a} \right)} \over 2} + {{1 - \cos 2\left( {x - b} \right)} \over 2} \cr 
& = 1 + {1 \over 2}\left[ {\cos 2\left( {x - a} \right) - \cos 2\left( {x - b} \right)} \right] \cr& = 1 + \frac{1}{2}.\left( { - 2} \right)\sin \left( {2x - a - b} \right)\sin \left( {b - a} \right) \cr&= 1 - \sin \left( {2x - a - b} \right)\sin \left( {b - a} \right)\cr&= 1 + \sin \left( {2x - a - b} \right)\sin \left( {a - b} \right) \cr} \)

Do đó

xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close