Bài 1.35 trang 13 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.35 trang 13 sách bài tập Đại số và Giải tích 11 Nâng cao. Giải phương trình...

Đề bài

Giải phương trình:

\(12\cos x + 5\sin x \)\(+ {5 \over {12\cos x + 5\sin x + 14}} + 8 = 0\)

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Đặt \(y = 12\cos x + 5\sin x + 14\), ta có phương trình \(y + {5 \over y} - 6 = 0\).

\( \Leftrightarrow {y^2} - 6y + 5 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}
y = 1\\
y = 5
\end{array} \right.\)

Do đó

\(\left[ \matrix{
12\cos x + 5\sin x + 14 = 1 \hfill \cr 
12\cos x + 5\sin x + 14 = 5 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
12\cos x + 5\sin x = - 13\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 \right) \hfill \cr 
12\cos x + 5\sin x = - 9\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right) \hfill \cr} \right.\)

Chia hai vế của phương trình (1) và (2) cho \(13\left( {13 = \sqrt {{{12}^2} + {5^2}} } \right)\), gọi \(\alpha \) là số thỏa mãn \(\cos \alpha = {{12} \over {13}}\) và \(\sin \alpha = {5 \over {13}}\), ta có :

(1) \( \Leftrightarrow \cos (x - \alpha ) = - 1\)

\( \Leftrightarrow x - \alpha = \pi + k2\pi \)

\(\Leftrightarrow x = \alpha + \pi + k2\pi \)

(2) \( \Leftrightarrow \cos (x - \alpha ) = - {9 \over {13}}\)

\(\Leftrightarrow x = \alpha \pm \arccos \left( { - {9 \over {13}}} \right) + k2\pi \)

xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close