Bài 1.30 trang 12 SBT Đại số và Giải tích 11 Nâng cao

Giải bài 1.30 trang 12 sách bài tập Đại số và Giải tích 11 Nâng cao. Tính...

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Biết \(\cos {{2\pi } \over 5} = {{\sqrt 5 - 1} \over 4}\) hãy đưa ra biểu thức \(\sin x + \sqrt {5 + 5\sqrt 5 } \cos x\) về dạng \(C\sin \left( {x + \alpha } \right)\)

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\cos \frac{{2\pi }}{5} = \frac{{\sqrt 5 - 1}}{4}\\
\Rightarrow {\tan ^2}\frac{{2\pi }}{5} = \frac{1}{{{{\cos }^2}\frac{{2\pi }}{5}}} - 1\\
= 1:{\left( {\frac{{\sqrt 5 - 1}}{4}} \right)^2} - 1\\
= 5 + 2\sqrt 5 \\
\Rightarrow \tan \frac{{2\pi }}{5} = \sqrt {5 + 2\sqrt 5 } \\
\Rightarrow \sin x + \sqrt {5 + 2\sqrt 5 } \cos x\\
= \sin x + \tan \frac{{2\pi }}{5}\cos x\\
= \frac{1}{{\cos \frac{{2\pi }}{5}}}\left( {\sin x\cos \frac{{2\pi }}{5} + \sin \frac{{2\pi }}{5}\cos x} \right)\\
= \frac{4}{{\sqrt 5 - 1}}\sin \left( {x + \frac{{2\pi }}{5}} \right)
\end{array}\)

Quảng cáo

Lộ trình SUN 2026

LG b

Dùng máy tính cầm tay tính gần đúng C và \(\alpha \) nói trên.

Lời giải chi tiết:

\(C \approx 3,236067978,\alpha \approx 1,256637061...\)

xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close