Phương trình nào dưới đây chỉ có một nghiệm
Đáp án : C
Đưa phương trình về dạng ax + b = 0 để giải phương trình.
Ta có:
\(\begin{array}{l}4x - 1 = 4x + 3\\4x - 4x = 3 + 1\end{array}\)
\(0x = 4\) (vô lí)
Phương trình \(4x - 1 = 4x + 3\) vô nghiệm
Giải tương tự, ta được:
Phương trình \(5 + 2x = 2x - 5\) vô nghiệm;
Phương trình \(3x - 2x = 3x + 1\) có nghiệm duy nhất là \(x = - \frac{1}{2}\);
Phương trình \(x - 7x = 1 - 6x\) vô nghiệm.
Đáp án C.
Các bài tập cùng chuyên đề
Giải các phương trình sau:
a) \(8 + 2\left( {x - 1} \right) = 20\)
b) \(4\left( {3x - 2} \right) + 3\left( {x - 4} \right) = 7x + 20\)
c) \(\frac{{2x}}{3} + x = \frac{{2x + 5}}{6} + \frac{1}{2}\)
Giải bài toán bằng cách lập phương trình
Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 17 ngày. Do cải tiến kĩ thuật, năng suất mỗi ngày tăng thêm 7 tấm nên không những xí nghiệp đã hoàn thành kế hoạch sớm hơn 2 ngày mà còn dệt được thêm 7 tấm. Tính số thảm len mà xí nghiệp phải dệt theo hợp đồng.
Cho \(\Delta ABC\) nhọn (AB < AC). Hai đường cao BE và CF.
a) Chứng minh $\Delta ABE\backsim \Delta ACF$ và \(AE.AC = AF.AB\)
b) Trên tia BE lấy điểm N sao cho \(\widehat {ANC} = {90^0}\) (E nằm giữa B và N). Chứng minh $\Delta ANE\backsim \Delta ACN$ và \(A{N^2} = AE.AC\).
c) Trên cạnh CF lấy điểm M sao cho AM = AN. Tính số đo \(\widehat {AMB}\).
Phương trình bậc nhất một ẩn \(ax + b = 0\left( {a \ne 0} \right)\). Hạng tử tự do là
Điều kiện để $\Delta ABC\backsim \Delta DEF$ theo trường hợp cạnh – góc – cạnh nếu \(\widehat B = \widehat E\) là: