Hình vẽ dưới đây là đồ thị của hàm số nào?
Đáp án : C
Sử kiến thức về đồ thị hàm số \(y = \sin x\).
Hình trên là đồ thị của hàm số \(y = \sin x\)
Các bài tập cùng chuyên đề
Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt {{x^2} + 3} - 2}}{{x - 1}}\;khi\;x \ne 1\\ - 2m + 5\;\;\;\;\;\;khi\;x = 1\end{array} \right.\). Tìm m để hàm số liên tục tại \({x_0} = 1\).
Cho hình chóp tứ giác S. ABCD có đáy ABCD là hình thang, AD//BC, \(AD = 2BC\). Gọi O là giao điểm của AC và BD. Gọi G là trọng tâm của tam giác SCD. Chứng minh rằng OG//(SBC).
Giải phương trình: \({2^{2023}}\left( {{{\sin }^{2024}}x + {{\cos }^{2024}}x} \right)\left( {\sin x + \cos x} \right)\cos x = \frac{{\cos 2x}}{{1 - \tan x}}\)
Đầu năm 2023, anh M mua một chiếc ô tô 4 chỗ giá 800 triệu đồng để chở khách. Trung bình sau mỗi năm sử dụng, giá trị còn lại của ô tô giảm đi 0,5% (so với tháng trước đó). Biết rằng mỗi tháng anh làm ra được 16 triệu đồng (số tiền làm ra mỗi tháng không đổi). Hỏi sau 3 năm, tổng số tiền (bao gồm giá tiền ô tô và tổng số tiền anh M làm ra) anh M có được là bao nhiêu?
\(x = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\) là nghiệm của phương trình:
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d. Số hạng tổng quát \({u_n}\) được xác định theo công thức:
Cho cấp số nhân \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công bội q. Số hạng tổng quát \({u_n}\) được xác định theo công thức:
Cho hàm số \(y = f\left( x \right)\) xác định trên khoảng (a; b) chứa điểm \({x_0}\). Hàm số f(x) được gọi là liên tục tại điểm \({x_0}\) nếu:
Cho hàm số f(x) thỏa mãn \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = 2\). Tính giới hạn \(\mathop {\lim }\limits_{x \to 0} 3f\left( x \right)\).