Cho cấp số cộng \(\left( {{u_n}} \right)\) có \({u_1} = 2;d = 3\). Khi đó, \({u_4} + {u_6}\) bằng:
Đáp án : D
Sử dụng kiến thức về công thức số hạng tổng quát của cấp số cộng: Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1}\) và công sai d thì số hạng tổng quát \({u_n}\) của nó được xác định theo công thức: \({u_n} = {u_1} + \left( {n - 1} \right)d\).
Ta có: \({u_4} = {u_1} + 3d = 2 + 3.3 = 11;{u_6} = {u_1} + 5d = 2 + 5.3 = 17\)
Do đó, \({u_4} + {u_6} = 11 + 17 = 28\)
Các bài tập cùng chuyên đề
Tính giới hạn sau: \(I = \mathop {\lim }\limits_{x \to 1} \frac{{2\sqrt {3 + x} - 4x}}{{2x - 2}}\)
Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD. M là điểm nằm trên cạnh BC sao cho \(MB = 2MC\). Chứng minh rằng MG // (ACD)
Cho hai số thực a và b thỏa mãn điều kiện \(\sin \left( {a + b} \right) - 2\cos \left( {a - b} \right) = 0\). Tính giá trị của biểu thức \(A = \frac{1}{{2 - \sin 2a}} + \frac{1}{{2 - \sin 2b}}\).
Chứng minh rằng dãy số \({u_n} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + \ldots + \frac{1}{{n(n + 1)}}\) tăng và bị chặn trên.
Độ dài của 60 lá dương xỉ trưởng thành được cho bằng mẫu số liệu ghép nhóm sau:
Tần số của nhóm \(\left[ {30;40} \right)\) là:
Biết \(\mathop {\lim }\limits_{n \to + \infty } {u_n} = + \infty ,\mathop {\lim }\limits_{n \to + \infty } {v_n} = a > 0\). Chọn đáp án đúng