Bài 7.42 trang 65 SGK Toán 11 tập 2 - Kết nối tri thức

Cho hình hộp (ABCD.A'B'C'D') có độ dài tất cả các cạnh bằng (a,AA' bot (ABCD))

Tổng hợp đề thi giữa kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho hình hộp \(ABCD.A'B'C'D'\) có độ dài tất cả các cạnh bằng \(a,AA' \bot (ABCD)\) và \(\widehat {BAD} = {60^0}\).

a) Tính thể tích của khối hộp \(ABCD.A'B'C'D'\).

b) Tính khoảng cách từ \(A\) đến mặt phẳng \(\left( {A'BD} \right)\).

Phương pháp giải - Xem chi tiết

- Thể tích của khối hộp bằng tích của diện tích một mặt và chiều cao của khối hộp ứng với mặt đó.

- Khoảng cách từ một điểm M đến một mặt phẳng (P) là khoảng cách giữa M và hình chiếu H của M trên (P).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

 

a) Diện tích tam giác ABD bằng diện tích tam giác BCD vì chung đáy BD và chiều cao AO = OC (ABCD là hình thoi)

Diện tích tam giác ABD: \({S_{ABD}} = \frac{1}{2}AB.AD.\sin \widehat {BAD} = \frac{1}{2}a.a.\sin {60^0} = \frac{{{a^2}\sqrt 3 }}{4}\)

\( \Rightarrow S = 2{S_{ABD}} = \frac{{{a^2}\sqrt 3 }}{2}\)

Thể tích khối hộp là \(V = AA'.{S_{ABCD}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\)

b) Gọi \(AC \cap BD = \left\{ O \right\}\)

Ta có \(AA' \bot BD,AO \bot BD \Rightarrow BD \bot \left( {A'AO} \right);BD \subset \left( {A'BD} \right) \Rightarrow \left( {A'AO} \right) \bot \left( {A'BD} \right)\)

\(\left( {A'AO} \right) \cap \left( {A'BD} \right) = A'O\)

Trong (A’AO) kẻ \(AE \bot A'O\)

\( \Rightarrow AE \bot \left( {A'BD} \right) \Rightarrow d\left( {A,\left( {A'BD} \right)} \right) = AE\)

Xét tam giác ABD có AB = AD và \(\widehat {BAD} = {60^0}\) nên tam giác ABD đều

\( \Rightarrow OA = \frac{{a\sqrt 3 }}{2}\)

Xét tam giác AOA’ vuông tại A có

\(\frac{1}{{A{E^2}}} = \frac{1}{{A{{A'}^2}}} + \frac{1}{{O{A^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{7}{{3{a^2}}} \Rightarrow AE = \frac{{a\sqrt {21} }}{7}\)

Vậy \(d\left( {A,\left( {A'BD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\)

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close