Bài 5.6 trang 109 SGK Toán 11 tập 1 - Kết nối tri thức

Cho tam giác vuông ABC vuông tại A, có AB = h và góc B bằng (alpha ) (H.5.3). Từ A kẻ (A{A_1} bot BC), từ ({A_1}) kẻ ({A_1}{A_2} bot AC), sau đó lại kẻ ({A_2}{A_3} bot BC). Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn (A{A_1}{A_2}{A_3} ldots ) Tính độ dài đường gấp khúc này theo h và (alpha )

Tổng hợp đề thi giữa kì 2 lớp 11 tất cả các môn - Kết nối tri thức

Toán - Văn - Anh - Lí - Hóa - Sinh

Đề bài

Cho tam giác vuông ABC vuông tại A, có AB = h và góc B bằng \(\alpha \) (H.5.3). Từ A kẻ \(A{A_1} \bot BC\), từ \({A_1}\) kẻ \({A_1}{A_2} \bot AC\), sau đó lại kẻ \({A_2}{A_3} \bot BC\). Tiếp tục quá trình trên, ta được đường gấp khúc vô hạn \(A{A_1}{A_2}{A_3} \ldots \) Tính độ dài đường gấp khúc này theo h và \(\alpha \)

Phương pháp giải - Xem chi tiết

Dựa vào đề bài để tìm ra công thức tổng quát.

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Độ dài đường gấp khúc tạo thành cấp số nhân với số hạng tổng quát là:

\({u_n} = sin\;\alpha \; \times h \times {\left( {sin\;\alpha \;} \right)^{n - 1}}\).

Độ dài đường gập khúc: \(A{A_1} + {A_2}{A_3} + \ldots \).

Đây là tổng cấp số nhân lùi vô hạn với \({u_1} = sin\;\alpha \; \times h,\;q = sin\;\alpha \;\).

Nên \(A{A_1} + {A_2}{A_3} + \ldots = \frac{{sin\;\alpha \; \times h}}{{1 - sin\;\alpha \;}}\).

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close