Bài 2 trang 141 SGK Đại số và Giải tích 11

Xét tính liên tục của hàm số

Lựa chọn câu để xem lời giải nhanh hơn

LG a

Xét tính liên tục của hàm số \(y = g(x)\) tại \(x_0= 2\), biết 

\[g(x) = \left\{\begin{matrix} \dfrac{x^{3}-8}{x- 2}; &x\neq 2 \\ 5;& x=2 \end{matrix}\right.\]

Phương pháp giải:

Hàm số \(y=f(x)\) có tập xác định \(D\) liên tục tại \({x_0 \in D}\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Lời giải chi tiết:

Ta có:

\(\begin{array}{l}
\mathop {\lim }\limits_{x \to 2} g\left( x \right) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^3} - 8}}{{x - 2}}\\= \mathop {\lim }\limits_{x \to 2} \dfrac{{(x-2)(x^2+2x+4)}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \left( {{x^2} + 2x + 4} \right)\\
= {2^2} + 2.2. + 4 = 12\\
g\left( 2 \right) = 5\\
\Rightarrow \mathop {\lim }\limits_{x \to 2} g\left( x \right) \ne g\left( 2 \right)
\end{array}\)

Vì \(\underset{x\rightarrow 2}{\lim} g(x) ≠ g(2)\) nên hàm số \(y = g(x)\) gián đoạn tại \(x_0= 2\).

LG b

Trong biểu thức xác định \(g(x)\) ở trên, cần thay số \(5\) bởi số nào để hàm số liên tục tại \(x_0= 2\).

Lời giải chi tiết:

Để hàm số \(y = g(x)\) liên tục tại \(x_0= 2\) \( \Rightarrow \mathop {\lim }\limits_{x \to 2} g\left( x \right) = g\left( 2 \right) = 12 \Rightarrow \) ta cần thay số \(5\) bởi số \(12\).

xemloigiai.com

2K7 tham gia ngay group để nhận thông tin thi cử, tài liệu miễn phí, trao đổi học tập nhé!

close