Bài 16 trang 51 SGK Toán 9 tập 1Vẽ đồ thị các hàm số y = x và y = 2x + 2 Đề bài a) Vẽ đồ thị các hàm số \(y = x\) và \(y = 2x + 2\) trên cùng một mặt phẳng tọa độ. b) Gọi \(A\) là giao điểm của hai đồ thị nói trên, tìm tọa độ điểm \(A\). c) Vẽ qua điểm \(B(0; 2)\) một đường thẳng song song với trục \(Ox\), cắt đường thẳng \(y = x\) tại điểm \(C\). Tìm tọa độ của điểm \(C\) rồi tính diện tích tam giác \(ABC\) (đơn vị đo trên các trục tọa độ là xentimét). Phương pháp giải - Xem chi tiết a) Cách vẽ đồ thị hàm số \(y=ax+b,\ (a \ne 0)\): Đồ thị hàm số \(y=ax+b \, \, (a\neq 0)\) là đường thẳng: +) Cắt trục hoành tại điểm \(A(-\dfrac{b}{a}; \, 0).\) +) Cắt trục tung tại điểm \(B(0;b).\) Xác định tọa độ hai điểm \(A\) và \(B\) sau đó kẻ đường thẳng đi qua hai điểm đó ta được đồ thị hàm số \(y=ax+b \, \, (a\neq 0).\) b) Đồ thị hàm số \(y=ax\) và \(y=a'x+b'\) cắt nhau tại \(A\) thì hoành độ điểm \(A\) là nghiệm của phương trình: \(ax=a'x+b'.\) Giải phương trình tìm \(x\), rồi thay vào một trong hai công thức hàm số trên tìm được tung độ điểm \(A\). c) +) Đường thẳng đi qua điểm \(B(0; b)\) song song với trục \(Ox\) có phương trình là: \(y=b\). + Diện tích tam giác \(ABC\): \(S=\dfrac{1}{2}.h.a\) với \(h\) là độ dài đường cao, \(a\) là độ dài cạnh ứng với đường cao. Lời giải chi tiết a) +) Hàm số \(y=x\): Cho \(x= 1 \Rightarrow y=1 \Rightarrow M(1; 1)\) \(\Rightarrow \) đồ thị hàm số \(y=x\) là đường thẳng đi qua gốc tọa độ \(O(0;0)\) và điểm \(M(1; 1)\). +) Hàm số \(y=2x+2\) Cho \(x=0 \Rightarrow y=2.0+2=2 \Rightarrow B(0; 2)\). Cho \(x=-1 \Rightarrow y=2.(-1)+2=-2+2=0 \Rightarrow (-1; 0)\) Đồ thị hàm số \(y=2x+2\) là đường thẳng đi qua hai điểm có tọa độ là \(B(0; 2)\) và \((-1; 0)\). Đồ thị như hình bên.
b) Tìm tọa độ giao điểm \(A\): Hoành độ giao điểm \(A\) là nghiệm của phương trình: \(x = 2x + 2\)\(\Leftrightarrow x -2x = 2\)\(\Leftrightarrow -x =2\) \(\Leftrightarrow x =-2\) Thay \(x=-2\) vào công thức hàm số \(y=x\), ta được: \(y=-2\) Vậy tọa độ cần tìm là: \(A(-2; -2)\). c) +) Tìm tọa độ điểm \(C\) Đường thẳng qua \(B(0; 2)\) song song với trục hoành có phương trình là \(y=2\) Vì điểm \(C\) thuộc đường thẳng \(y=2\) nên có tung độ là \(y=2\) Vì \(C\) cũng thuộc đường thẳng \(y=x\) nên \(x=y=2\) Vậy ta có tọa độ điểm \(C(2;2)\) +) Tính diện tích tam giác \(ABC\): Kẻ \(AE \bot BC\), ta có \(AE=2+2=4\) và \(BC=2\) Tam giác \(\Delta{ABC}\) có \(AE\) là đường cao ứng với cạnh \(BC\). Diện tích \(\Delta{ABC}\) là: \(S=\dfrac{1}{2}.AE.BC=\dfrac{1}{2}.4.2=4\) \((cm^2)\). xemloigiai.com
|