Bài 1 trang 140 SGK Đại số và Giải tích 11

Dùng định nghĩa xét tính liên tục của hàm số

Đề bài

Dùng định nghĩa xét tính liên tục của hàm số \(f(x) = x^3+ 2x - 1\) tại \(x_0= 3\).

Phương pháp giải - Xem chi tiết

Hàm số \(y=f(x)\) có tập xác định \(D\) liên tục tại \({x_0 \in D}\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)\).

Quảng cáo

Lộ trình SUN 2026

Lời giải chi tiết

Hàm số \(f(x) = x^3+ 2x - 1\) xác định trên \(\mathbb R\) và \(x_0= 3 ∈ \mathbb R\).

Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 3} f\left( x \right) = {3^3} + 2.3 - 1 = 32\\f\left( 3 \right) = {3^3} + 2.3 - 1 = 32\end{array} \right. \) \(\Rightarrow \mathop {\lim }\limits_{x \to 3} f\left( x \right) = f\left( 3 \right)\).

Vậy hàm số đã cho liên tục tại điểm \(x_0= 3\).

 xemloigiai.com

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

close